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ABSTRACT
Managing impounded river systems is a recurring challenge for 
aquatic resource professionals because reservoirs serve multiple 
functions with different ecological and socioeconomic outcomes. 
However, research on fishes in reservoirs has disproportionally 
focused on recreationally and economically important species, with 
less attention directed toward fish assemblages despite the poten-
tial for management at the assemblage level. As such, evaluation 
of relationships between reservoir fish assemblages and biotic and 
abiotic factors and testing whether assemblage structure is affected 
by changing environmental conditions may deepen ecological 
understanding and provide insights for reservoir fisheries manage-
ment. Our overall objective was to assess these relationships in 11 
reservoirs from North Carolina, USA. We sampled fish assemblages 
in the reservoirs, which spanned five river basins representing a 
range of habitat conditions, using experimental gillnets and pulsed 
DC nighttime electrofishing. Multivariate statistical analyses indi-
cated that taxonomic differences in fish assemblage composition 
among river basins followed a gradient of productivity. The top 
contributing species to reservoir dissimilarity were bluegill (Lepomis 
macrochirus), gizzard shad (Dorosoma cepedianum), black crappie 
(Pomoxis nigromaculatus), and white perch (Morone americana). 
These four species were positively associated with factors that 
reflect increasing eutrophic conditions in the 11 reservoirs and 
could, therefore, serve as indicators of reservoir productivity, 
anthropogenic influence, and fish assemblage structure, in addition 
to their key role in reservoir fisheries management. Whereas 
fisheries research has historically focused on assessing fish 
populations, our results illustrate the ecological and management 
insights derived from simultaneously collecting assemblage- and 
population-level data. Research on reservoir fish assemblages in 
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relation to biotic and abiotic conditions may help advance fish 
ecology and management alike.

KEY POLICY HIGHLIGHTS
•	 Reservoir research has disproportionally focused on individual 

species of recreational and socioeconomic importance, rather 
than fish assemblages.

•	 Simultaneous collection of assemblage- and population-level 
fisheries data may generate both ecological and management 
insights that species-specific sampling cannot.

•	 As anthropogenic influences on reservoirs continue to increase, 
integrating environmental (biotic and abiotic conditions) and 
fish-assemblage data may be helpful for advancing our under-
standing of fish ecology and management alike.

Introduction

Flow regulation in the form of dams, wing dikes, levees, and other structures is the most 
pervasive anthropogenic alteration to rivers worldwide (Nilsson et  al. 2005). A global 
surge in dam construction between 1950 and 1986 caused a sevenfold increase in the 
number of large reservoirs (i.e. > 10,000 ha; Dynesius and Nilsson 1994). Managing 
impounded river systems to achieve ecological and socioeconomic goals is a recurring 
challenge for aquatic resource professionals because reservoirs serve multiple functions 
(e.g. flood control, irrigation, recreation; Erickson et  al. 2008; Allen et  al. 2008) and have 
been important to human civilizations for over 5,000 years (Schnitter 1994). However, 
despite their broad utility and presence in virtually every major river in North America 
(Benke 1990), reservoirs have received less research attention than other aquatic systems 
(Kubečka et  al. 2009, Guo et  al. 2021).

Relative to natural lakes, research on reservoir fishes has focused disproportionally on 
individual species of recreational and socioeconomic importance, rather than fish assem-
blages (Tonn and Magnuson 1982; Jackson et  al. 2001; Irz et  al. 2002; Miranda et  al. 
2008), despite the potential for management at the assemblage level (Fischer and Quist 
2019). Reservoirs can have varying effects on the composition and distribution of aquatic 
organisms by altering the physical and chemical processes of lotic habitats (Baxter 1977; 
Chien 1985; Bonner and Wilde 2000), limiting passage of migratory freshwater and dia-
dromous species (Shields et  al. 2000; Hall et  al. 2011), and reducing diversity by limiting 
lotic taxa (Gido et  al. 2009; Freedman et  al. 2014). Reservoirs are also commonly stocked 
with ubiquitous sportfish species that can provide recreational opportunities but are 
often non-native (Gozlan et  al. 2010). Although introduction and management of 
non-native top predators can have deleterious effects on native taxa (Clarkson et  al. 
2005; Eby et  al. 2006), reservoirs provide insight into the processes regulating assemblage 
composition because they represent novel habitats with established colonization inputs 
(e.g. connected systems, human introduction; Gido et  al. 2009). Reservoir management 
often prioritizes recreational angling through fish manipulation such as stock enhance-
ment, species-specific harvest regulations, and species introduction, providing an oppor-
tunity to characterize the factors that influence fish assemblage structure (Bonner and 
Wilde 2000, Carol et  al. 2006, Fischer and Quist 2019). Investigation of fish assemblages 
may support better understanding of their ecological structure amid changing environ-
mental conditions (e.g. land-use change, urbanization, water demands; Fischer and Quist 
2019) and may allow optimization of management and conservation strategies for species 
or populations that reside in, or are influenced by, reservoirs.
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Longitudinal environmental gradients and local habitats affect reservoir fish assemblage 
structure (Matthews et  al. 1989; Gido et  al. 2002). Unlike rivers and streams that are often 
sampled with a single method (i.e. backpack or boat electrofishing), reservoirs contain 
multiple zones (e.g. littoral, limnetic) and characteristics of riverine and lacustrine habitats 
that require multiple methods to characterize fish assemblages (Fischer and Quist 2014a, 
2014b). Previous studies of reservoir fish assemblages have investigated environmental 
gradients (Gido et  al. 2002), habitat use (Werner et  al. 1977), individual lake zones (Gido 
and Matthews 2000), or interspecific interactions (Garvey et  al. 1998; Winters and Budy 
2015) within one or several systems.

Comparisons of reservoir fish assemblages may be useful for testing whether and how 
biotic and abiotic factors influence fish assemblage structure. This information may be 
used to understand large-scale factors influencing the occurrence and distribution of 
fishes, monitor environmental changes, and improve management. Therefore, the objec-
tives of this study were to (1) assess the relative importance of morphometric and phys-
icochemical variables in structuring fish assemblages, (2) evaluate associations between 
fish assemblage structure (e.g. species abundances, diversity indices) and environmental 
gradients, and (3) characterize the relative contributions of individual species to taxo-
nomic differences among river basins.

Methods

Study site

Eleven reservoirs from five river basins across North Carolina (Figure 1) were studied because 
they encompassed a wide range of morphometric and physicochemical conditions (Tables 1 
and 2), yet were managed similarly for recreational angling opportunities. Morphometric and 
physiochemical variables were measured and calculated by the North Carolina Environmental 
Quality Water Sciences Section using standardized methods as part of the Ambient Lakes 
Monitoring Program Database (1981) (weblink in References and Data Deposition section). 
Reservoirs were characterized with measurements of morphometric and physiochemical 

Figure 1.  Map of 11 reservoirs (points) across 5 river basins in North Carolina, USA: Hiwassee basin in purple 
(Hiwassee Lake); catawba basin in green (east to west—Lake rhodhiss, Lake hickory, lookout shoals Lake); Yadkin-Pee 
dee river basin in red (North to South—high rock Lake, tuckertown reservoir, badin Lake, Lake tillery); cape fear river 
basin in blue (Jordan Lake); Roanoke river basin in gold (east to west—Lake gaston, Roanoke rapids Lake).
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Table 1.  Morphometric and physicochemical variables of 11 reservoirs throughout North Carolina, USA.

Variable Code Mean SE Min Max Eigenvectors

Surface area (km2) area 30.1 7.5 5.1 82.2 0.14 0.41 0.10
Drainage area (km2) drain 9,498 2,118 2,507 21,601 0.06 0.28 −0.36
Volume (km3) volume 0.2 0.05 0.01 0.6 −0.07 0.45 0.23
Shoreline Development 

Index
SDI 12.2 1.3 4.9 21.1 0.08 0.25 0.42

Elevation (m a.s.l.) elevation 190 39 40 464 −0.20 −0.16 0.38
Depth (m) depth 12.4 3.7 4.3 43.3 −0.22 0.18 0.30
Maximum depth (m) depth_max 30.9 7.3 11.6 93.9 −0.23 0.19 0.25
Secchi depth (m) Secchi 1.4 0.3 0.6 3.9 −0.28 0.19 0.16
Turbidity (NTU) turbidity 6.7 1.2 1.8 14.8 0.29 −0.08 0.13
Temperature (°C) temp 26.1 0.4 23.6 28.0 0.15 0.14 0.16
Maximum temperature (°C) temp_max 30.1 0.4 27.9 32.3 0.25 −0.21 0.15
Dissolved oxygen (mg/L) DO 8.4 0.3 6.3 9.8 −0.06 −0.27 0.20
Minimum dissolved 

oxygen (mg/L)
DO_min 5.9 0.5 3.3 7.9 −0.20 −0.32 0.16

Conductance (µmhos/cm) conduct 83.7 11.2 29.2 169.2 0.26 0.19 −0.16
Chlorophyll a (µg/L) Chla 19.9 3.6 4.7 42.1 0.30 −0.07 0.22
Maximum chlorophyll a 

(µg/L)
Chla_max 39.1 8.1 6.8 100.0 0.30 0.00 0.15

Total phosphorus (mg/L) TP 0.04 0.01 0.02 0.08 0.29 −0.08 0.23
Ammonia (mg/L) NH3 0.03 0.01 0.02 0.05 0.24 0.19 −0.05
Nitrites and nitrates 

(mg/L)
NO2+NO3 0.2 0.04 0.02 0.4 0.22 −0.17 0.14

Total Kjeldahl nitrogen 
(mg/L)

TKN 0.5 0.06 0.2 0.9 0.31 0.02 0.10

Eigenvalues 9.04 3.58 2.69
Percent variance explained 45.2 17.9 13.5
Cumulative percent variance explained 45.2 63.1 76.6

Physicochemical variables were estimated from monthly samples taken 1 m beneath the surface between may and 
September from 2014 to 2018 (Ambient Lakes Monitoring Program Database). means, standard errors (SE), mini-
mums (Min), maximums (Max), eigenvalues for the first three principal components, and their associated eigenvec-
tors are provided for each reservoir variable. Significant eigenvectors (p ≤ 0.05) from the principal component 
analysis are indicated in bold.

Table 2.  Mean and standard error (given in parentheses) of morphometric and physicochemical variables of five 
North Carolina, USA river basins (N represents reservoir sample size for each basin). physicochemical variables were 
sampled 1 m beneath the surface monthly (may through September) from 2014 to 2018 (Ambient Lakes Monitoring 
Program Database).

Hiwassee Catawba Yadkin Cape Fear Roanoke

Variable N = 1 N = 3 N = 4 N = 1 N = 2

Surface area (km2) 23.7 12.0 (3.5) 28.7 (11.2) 56.4 50.4 (31.8)
Drainage area (km2) 2,507 3,323 (270.7) 11,135 (48,141) 4,377 21,541 (59.6)
Volume (km3) 0.5 0.1 (0.04) 0.2 (0.06) 0.3 0.3 (0.2)
Shoreline Development Index 15.2 10.1 (1.2) 13.6 (2.5) 12.1 11.2 (6.3)
Elevation (m a.s.l.) 464 281 (14.2) 153 (24.4) 66 51 (10.4)
Mean depth (m) 43.3 8.4 (1.2) 11.7 (5.4) 4.3 8.5 (3.7)
Maximum depth (m) 93.9 20.9 (2.9) 28.1 (10.0) 11.6 29.6 (0.6)
Secchi depth (m) 3.9 1.3 (0.07) 1.0 (0.2) 0.7 1.71 (0.01)
Turbidity (NTU) 1.9 5.6 (1.5) 8.7 (2.6) 10.8 5.02 (0.3)
Temperature (°C) 25.9 24.6 (0.5) 27.1 (0.5) 27.2 25.8 (0.6)
Maximum temperature (°C) 27.9 29.7 (0.5) 31.4 (0.4) 30.6 28.8 (0.4)
Dissolved oxygen (mg/L) 8.2 9.2 (0.1) 8.4 (0.8) 8.0 7.6 (0.4)
Minimum dissolved oxygen 

(mg/L)
7.5 7.5 (0.3) 5.3 (0.6) 4.6 4.7 (1.4)

Conductance (µmhos/cm) 29.2 54.0 (1.0) 89.5 (1.1) 169.2 101.5 (0.1)
Chlorophyll a (µg/L) 4.7 14.1 (1.2) 29.8 (4.2) 35.7 8.7 (0.5)
Maximum chlorophyll a (µg/L) 6.8 26.3 (0.9) 50.5 (8.2) 100.0 21.0 (1.0)
Total phosphorus (mg/L) 0.02 0.03 (0.01) 0.05 (0.02) 0.06 0.02 (<0.01)
Ammonia (mg/L) 0.02 0.02 (<0.01) 0.03 (<0.01) 0.05 0.03 (0.01)
Nitrites and nitrates (mg/L) 0.02 0.1 (0.02) 0.3 (0.06) 0.09 0.05 (0.01)
Total Kjeldahl nitrogen (mg/L) 0.2 0.4 (0.01) 0.6 (0.05) 0.9 0.4 (0.01)
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variables previously recognized as important in structuring lentic fish assemblages (Jackson 
and Harvey 1993; Irz et  al. 2007; Miranda et  al. 2008; Fischer and Quist 2019).

Sample design and data collection

Fish assemblage
Fish sampling was conducted to ensure that samples were spatially allocated throughout 
each reservoir to sufficiently characterize fish assemblages. A geographic information sys-
tem was used to generate 20 sample reaches that were evenly spaced based on the unique 
shoreline length of each reservoir. At each of the 20 sample reaches, a combination of 
passive and active sampling methods was used to characterize fish assemblage composi-
tion. For this study, each reservoir was sampled once actively (December 2018) and once 
passively (either December 2017–March 2018 or December 2018–March 2019). Sampling 
occurred during the same months to minimize temporal variation among fish samples 
and limit potential sampling biases in species representation among seasons.

Boat electrofishing and gillnets were used to sample fish assemblages to maximize the 
number of fish species, individuals, and length classes sampled, thereby reducing sampling 
gear bias (Fischer and Quist 2014a). Littoral species were targeted using pulsed DC night-
time boat electrofishing (beginning 30 min after sunset) to account for effects of diel 
period on electrofishing catch rates (Sanders 1992; Schael et  al. 1995; Reynolds 1996; 
Pierce et  al. 2001; McInerny and Cross 2005) and to maximize the number of species and 
individuals sampled for characterizing assemblage composition (Fischer and Quist 2014a). 
Twenty electrofishing samples in each reservoir were conducted along the shoreline in a 
randomly selected direction for 5 min at approximately 3.2 km/h with two netters using 
6.3-mm delta mesh dipnets. Pulsed DC electrofishing output was standardized to 3000 W 
for all water bodies following Burkhardt and Gutreuter (1995), Miranda and Boxrucker 
(2009), and Miranda (2009).

Gillnets were 61 m long and consisted of four 15.2-m sections (2.4 m in height) and four 
bar-mesh sizes arranged in a random order: 38 mm, 64 mm, 76 mm, 51 mm. In each reser-
voir, 20 gillnets were set at least an hour before sunset, bottom-deployed perpendicular to 
shore in at least 3 m depth, and retrieved an hour after sunrise the following day. The first 
deployed mesh (i.e. 38 mm or 51 mm) was randomized at each location and recorded.

Fish total length (TL) and weight were measured to the nearest millimeter and gram, 
respectively. Fish were identified to species in the field and released. Catch-per-unit-effort 
(CPUE) was estimated on a species-specific basis as the mean number of individuals per 
hour of electrofishing and the mean number of individuals per net-night (NN) for gill-
nets. Species represented by fewer than 10 individuals for a sampling method were 
removed from gear-specific taxonomic analyses (see below).

Statistical analyses

Group comparisons of reservoir environmental variables
Statistical analyses were performed using Program R version 3.6.1 (R Core Team 2019). 
An alpha value of 0.05 was used for detection of statistically significant differences. All 
environmental variables were treated as independent, allowing the exploration of all pos-
sible relationships in all analyses motivated by the objectives. A permutational multivari-
ate analysis of variance (PERMANOVA) on the Bray-Curtis dissimilarity matrices of 
habitat variables was used to test for differences among morphometric and physicochem-
ical variables of reservoirs and river basins. The PERMANOVA is a non-parametric test 
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that partitions variation from dissimilarity-based matrices and estimates an analog to 
Fisher’s F-ratio (Anderson 2001). Differences in environmental variables among river 
basins were evaluated using analysis of variance (ANOVA). Principal component analysis 
(PCA) was used to reduce the dimensionality of reservoir habitat variables and test for 
potential patterns in environmental variables that might otherwise be undetected. 
Eigenvectors from the PCA represent the magnitude or importance of, and tests for pat-
terns among, the environmental variables (Table 1).

Catch summary
To summarize catches, differences in species, family, and trophic (following trophic clas-
sification from Miranda et  al. 2008) richness among river basins were evaluated with 
individual tests based on the distribution of the data (ANOVA or Kruskal-Wallis) for 
overall differences in assemblage structure. Richness was defined as the total count of 
species. To further assess catches, nonmetric multidimensional scaling (NMDS) was used 
to ordinate the Bray-Curtis dissimilarity of reservoir fish assemblage composition using 
taxonomic CPUE. To minimize gear bias and prevent mixing of relative abundances from 
multiple sampling gears, fish assemblage composition (i.e. abundance and diversity) was 
evaluated separately for electrofishing and gillnet samples. Differences in fish assemblage 
composition among reservoirs were tested using PERMANOVA. Like the NMDS analysis, 
PERMANOVAs were conducted separately for each sampling method (i.e. electrofishing, 
gillnet) and assemblage composition measure. If statistically significant differences in fish 
assemblage composition among reservoirs were observed using PERMANOVA, similarity 
percentage (SIMPER; Clarke 1993) was estimated to determine the contributions of spe-
cies to the overall Bray-Curtis dissimilarity. The Shannon diversity (Shannon 1948) and 
Pielou evenness (Pielou 1966) indices were used to compare the river-basin diversity 
among electrofishing and gillnet sampling methods.

Fish assemblage comparisons
Correlations between fish assemblage structure and morphometric and physicochemical 
reservoir variables were evaluated using rotational environmental vector fitting with 
NMDS ordinations to test for significantly correlated environmental vectors and evaluate 
the direction of the maximum correlation using 999 random permutations of the data 
(Faith and Norris 1989). Rotational vector fitting was conducted using taxonomic fish 
assemblage data for sampling-gear-specific NMDS ordinations to test for potential rela-
tionships between fish assemblage structure and habitat variables.

Analysis of similarities (ANOSIM; Clarke 1993) was performed on sampling-method-spe-
cific catch rate data to test for significant differences in river basin fish assemblages using 
Bray-Curtis dissimilarity and 999 random permutations of the data. A Bray-Curtis dissimi-
larity matrix was then used to generate pairwise comparisons of river-basin taxonomic 
structure to quantify differences in fish assemblages for each sampling method. Similarity 
percentages were subsequently calculated for each sampling method to identify species that 
disproportionally contributed to overall Bray-Curtis dissimilarity among river basins. 
Spearman’s rank correlation was calculated to evaluate relationships among the catch rates 
of the top contributing species, reservoir habitat variables, and diversity indices.

Results

Group comparisons of reservoir environmental variables
The reservoirs in this study represented a wide range of surface areas, elevations, and 
depths, but collectively, morphometric variables did not differ among reservoirs (F1,10 = 
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0.21; p = 0.91) or river basins (F4,6 = 0.72; p = 0.69). However, physicochemical variables 
differed among reservoirs (F1,10 = 4.92; p = 0.03) and river basins (F4,6 = 26.61; p ≤ 0.001). 
Specifically, river basins differed in elevation (F4,6 = 27.8; p ≤ 0.001), water temperature 
(F4,6 = 5.96; p = 0.03), chlorophyll a (F4,6 = 8.21; p = 0.01), conductance (F4,6 = 1081; 
p ≤ 0.001), and total Kjeldahl nitrogen (F4,6 = 21.49; p = 0.001; Table 2).

Three principal component axes explained 76.6% of the variation in environmental 
variables, with 45.2% of the overall variation explained by the first principal component. 
The first principal component represented a gradient between increased nutrient availabil-
ity (e.g. nitrogen and phosphorus) and greater water depth and clarity (Table 1). The 
second principal component denoted a gradient between larger reservoir size (i.e. volume, 
surface area) and lower dissolved oxygen (DO). Finally, the third principal component 
represented a gradient between (1) greater shoreline development and elevation and (2) 
smaller drainage area.

Catch summary
Collectively, 20,383 fish representing 52 species (Table 3) were sampled across all reser-
voirs using electrofishing (N = 9,095) and gillnets (N = 11,288). Electrofishing produced 43 
species (12 exclusively), whereas gillnet sampling produced 40 species (9 exclusively; 
Figure 2). Fourteen species were detected in all reservoirs using at least one sampling 

Table 3. F ishes sampled from 11 reservoirs across North Carolina, USA.

Common name Scientific name Code

Alewifea Alosa pseudoharengus ALWF
Black Crappiec Pomoxis nigromaculatus BLCR
Blue Catfishb Ictalurus furcatus BLCF
Blueback Herringa,c Alosa aestivalis BBHR
Bluegillc Lepomis macrochirus BLGL
Brown Bullhead Ameiurus nebulosus BRBH
Chain Pickerelb Esox niger CPIC
Channel Catfishc Ictalurus punctatus CHCF
Common Carpc Cyprinus carpio CCRP
Flathead Catfishb,c Pylodictis olivaris FHCF
Gizzard Shadc Dorosoma cepedianum GZSD
Green Sunfisha Lepomis cyanellus GNSF
Largemouth Bassc Micropterus salmoides LMBS
Longnose Garb Lepisosteus osseus LNGR
Notchlip Redhorseb Moxostoma collapsum NLRH
Pumpkinseeda,c Lepomis gibbosus PUMP
Quillbackb Carpiodes cyprinus QBCK
Redbreast Sunfisha,c Lepomis auritus RBSF
Redear Sunfishc Lepomis microlophus RESF
Silver Redhorseb Moxostoma anisurum SVRH
Smallmouth Bassb Micropterus dolomieu SMBS
Spotted Bass Micropterus punctulatus SPBS
Striped Bassc Morone saxatilis STBS
Threadfin Shada Dorosoma petenense THSD
Walleyeb Sander vitreus WLYE
Warmoutha Lepomis gulosus WMTH
White Bassb Morone chrysops WHBS
White Catfishb Ameiurus catus WHCF
White Crappieb Pomoxis annularis WHCR
White Perchc Morone americana WHPH
White Shinera Luxilus albeolus WHSH
Yellow Bullheadb Ameiurus natalis YLBH
Yellow Perchc Perca flavescens YLPH

Species with fewer than 10 sampled individuals were removed from gear-specific taxonomic analyses.
aSpecies for which < 10 individuals were sampled across all gillnet samples.
bSpecies for which < 10 individuals were sampled across all electrofishing samples.
cSpecies detected in all reservoirs.
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method (Table 3). These species represented 81.4% of the total catch and 61.9% of the 
total sampled biomass. No statistically significant differences were observed in electrofish-
ing or gillnet sampling comparisons of river-basin species, family, and trophic richness or 
species evenness (Figure 2). Furthermore, using combined data from both sampling meth-
ods, hereafter referred to as ‘total sampling’, species richness differed significantly among 
river basins (F4,6 = 6.53; p = 0.02). The river-basin Shannon diversity index was signifi-
cantly different among gillnet samples (F4,6 = 15.1; p = 0.003), but not among electrofish-
ing samples (F4,6 = 4.36; p = 0.054; Figure 2).

Figure 2.  Mean river-basin species, family, and trophic richness (top, left to right), Shannon diversity (bottom left), 
and Pielou evenness (bottom right) for total sampling (electrofishing and gillnet) in 11 North Carolina, USA res-
ervoirs. Error bars represent 95% confidence intervals around each mean; missing error bars reflect a sample size 
of one.
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Fish assemblage comparisons
Statistically significant differences in taxonomic fish assemblage composition among 
river basins were observed (electrofishing [F4,6 = 3.69; p = 0.007], gillnet [F4,6 = 3.44; 
p = 0.002]). Multivariate analyses of taxonomic composition produced low-stress NMDS 
ordinations for electrofishing (2 axes; stress = 0.03; Figure 3 [A and B]) and gillnet 
samples (2 axes; stress = 0.07; Figure 3 [C and D]). Taxonomic fish assemblage struc-
ture differed among river basins for electrofishing (r = 0.61; p = 0.005) and gillnet sam-
ples (r = 0.74; p = 0.001). Gillnet samples displayed higher estimates of Bray-Curtis 
dissimilarity in all pairwise river-basin comparisons (Figure 4). Differences in river-basin 
taxonomic assemblage structure were greatest in pairwise comparisons with the Hiwassee 
basin and lowest in Roanoke basin comparisons. Similar environmental vectors were 
associated with NMDS axes for taxonomic composition among reservoirs (Figure 3). 
The environmental vectors most commonly associated with assemblage structure from 
electrofishing and gillnet samples were indicators of reservoir productivity, including 
Secchi, mean, and maximum depths, conductance, nitrogen, phosphorus, chlorophyll a, 
and temperature (Figure 3; Table 4).

Figure 3. R iver basin-specific fish assemblage composition nonmetric multidimensional scaling (NMDS) ordinations 
based on Bray-Curtis dissimilarity of taxonomic catch-per-unit-effort (appendix A) for 11 North Carolina, USA reservoirs. 
Environmental vectors for (A) electrofishing and (C) gillnet samples indicate the direction and strength of statistically 
significant (p ≤ 0.05) correlations within the NMDS ordination for habitat variables with abbreviated codes (Table 1). 
species-specific ordinations for (B) electrofishing and (D) gillnet samples are presented using species codes (Table 3).
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Several measures of abundance and diversity were correlated with environmental vari-
ables. Drainage area was positively correlated with biomass from electrofishing (rs = 0.63; 
p = 0.04) and gillnet samples (rs = 0.65, p = 0.03), as well as two richness indices (i.e. total 
family, gillnet species). Electrofishing biomass also positively correlated with water tem-
perature (rs = 0.68; p = 0.03), chlorophyll a (rs = 0.72; p = 0.02), maximum chlorophyll a 
(rs = 0.69; p = 0.02), total phosphorus (rs = 0.65; p = 0.03), NO2 + NO3 (rs = 0.75; p = 0.01), 

Figure 4.  Bray-Curtis dissimilarity of pairwise taxonomic comparisons for five North Carolina, USA river-basin fish 
assemblages sampled using electrofishing and gillnets. Light grey boxplots represent comparisons of 
electrofishing-sampled fish assemblages; dark grey denotes fish assemblages collected with gillnets.

Table 4. E nvironmental vector correlation coefficients for nonmetric multidimensional scaling (NMDS) ordination for 
electrofishing and gillnet sampling conducted on 11 reservoirs in North Carolina, USA.

Electrofishing Gillnet

Environmental Vectors r2 p r2 p

Surface area (km2) 0.19 0.42 0.20 0.43
Drainage area (km2) 0.23 0.35 0.25 0.32
Volume (km3) 0.49 0.09 0.24 0.35
Shoreline Development Index 0.46 0.10 0.33 0.21
Elevation (m a.s.l.) 0.46 0.09 0.73 0.01
Depth (m) 0.66 0.03 0.54 0.08
Maximum depth (m) 0.72 0.02 0.49 0.10
Secchi depth (m) 0.95 <0.01 0.64 0.05
Turbidity (NTU) 0.46 0.09 0.47 0.07
Temperature (°C) 0.10 0.67 0.55 0.02
Maximum temperature (°C) 0.62 0.01 0.43 0.10
Dissolved oxygen (mg/L) 0.00 0.99 0.06 0.76
Minimum dissolved oxygen (mg/L) 0.25 0.33 0.43 0.12
Conductance (µmhos/cm) 0.40 0.14 0.72 0.01
Chlorophyll a (µg/L) 0.56 0.03 0.67 0.01
Maximum chlorophyll a (µg/L) 0.49 0.08 0.63 0.02
Total phosphorus (mg/L) 0.40 0.13 0.51 0.05
Ammonia (mg/L) 0.22 0.34 0.33 0.22
Nitrites and nitrates (mg/L) 0.53 0.05 0.35 0.17
Total Kjeldahl nitrogen (mg/L) 0.55 0.05 0.74 <0.01
NMDS ordinations reflect taxonomic classifications (Figure 3 [a and C]). statistically significant (p ≤ 0.05) vector correla-

tions for variables in Table 1 are bold.
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and total Kjeldahl nitrogen (rs = 0.83; p = 0.003), and negatively correlated with minimum 
DO (rs = −0.70; p = 0.02). Additionally, gillnet biomass correlated with surface area (rs = 
0.69; p = 0.02), water temperature (rs = 0.66; p = 0.03), conductance (rs = 0.65; p = 0.03), 
and lower elevation (rs = −0.64; p = 0.04).

Four species accounted for the greatest Bray-Curtis dissimilarity across all comparisons: 
bluegill (Lepomis macrochirus; 23%) and gizzard shad (Dorosoma cepedianum; 21%) in 
electrofishing samples, and black crappie (Pomoxis nigromaculatus; 18.7%) and white 
perch (Morone americana; 13.9%) in gillnet samples (Figure 5). Gear-specific catch rates 
for gizzard shad, black crappie, and white perch were all positively correlated with water 
temperature, chlorophyll a, maximum chlorophyll a, and total Kjeldahl nitrogen (Table 5). 
Additionally, black crappie and white perch catch rates were negatively correlated with 
greater mean depth and minimum DO and positively correlated with conductance. 
Gizzard shad and black crappie catch rates were positively correlated with higher levels of 
total phosphorus and decreased with greater Secchi depth. Bluegill and gizzard shad catch 
rates were positively correlated with elevated nitrogen levels, as were overall electrofishing 
catch rates (rs = 0.65; p = 0.03). High white perch CPUE was observed in areas of high 
turbidity, and black crappie CPUE was positively correlated with warmer water 
temperatures.

Discussion

Synopsis
We found that differences among reservoirs in fish assemblage structure were driven pri-
marily by productivity gradients that were consistent within river basins. Additional gra-
dients influencing assemblage composition were associated with reservoir size and 
geography. Certain species (bluegill, gizzard shad, black crappie, white perch) contributed 
disproportionately to river-basin differences, and their patterns of relative abundance were 
positively associated with primary productivity. On an individual species level, these fish 
are important both recreationally (Spotte 2007) and ecologically (Mills et  al. 1994; Schaus 
and Vanni 2000), but together could serve as indicators of productivity, anthropogenic 
influence, and fish assemblage structure in reservoirs.

Group comparisons of reservoir environmental variables
Reservoirs differed across individual morphometric and physicochemical gradients but 
were more similar within than among river basins. River-basin similarity was further sup-
ported by ordinations of reservoir taxonomic fish assemblages, in which reservoirs within 
the same basin were positioned closer together, with minimal overlap among basins. Our 
findings indicate that basin-wide analyses can yield ecological insights on fish popula-
tions, assemblages, and habitats that reservoir-specific analyses do not. Including river 
basin in analyses emphasizes the natural landscape and accounts for reservoir connectivity 
(or lack thereof). Similarly, Kratz et  al. (1997) provided examples of how landscape posi-
tion of Wisconsin lakes related to gradients of primary production, lake area, and species 
richness, likening their observations to the river continuum concept (Vannote et  al. 1980).

Catch summary
Species richness, diversity, and evenness variation were primarily associated with eutro-
phic system physiochemical variables. Eutrophication accelerated by anthropogenic activ-
ity (e.g. cultural eutrophication) can cause structural changes in freshwater ecosystems 
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including harmful algal blooms and mortality of aquatic organisms from hypoxic events 
(e.g. agricultural runoff, wastewater disposal; Schindler and Vallentyne 2008; Schindler 
2012). Reservoirs, by definition, are an example of environmental manipulation and are 
more susceptible to anthropogenic disturbances, such as eutrophication and water fluctu-
ation, than natural lakes (Wetzel 1990; Havel et  al. 2005). The annual cost of eutrophica-
tion in U.S. freshwater systems has been estimated at $2.2 billion through economic losses 

Figure 5. R ank order cumulative contribution of reservoir species from electrofishing (top) and gillnet (bottom) sam-
ples to pairwise Bray-Curtis dissimilarities among river basins in North Carolina, USA. Cumulative species contributions 
to reservoir fish assemblage dissimilarities are relative as a 10% cumulative contribution is equivalent to all Bray-Curtis 
dissimilarity contained in a single pairwise comparison of two of the eleven sampled reservoirs.
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in drinking water, biodiversity recovery, lake closure to recreational use, and property 
value (Dodds et  al. 2009). These anthropogenic effects will likely increase globally, as the 
world’s population is expected to grow by over 40% between 2003 and 2050 (Cohen 
2003). Therefore, gradients in productivity and trophic state, which separated reservoirs 
herein, may change over time as anthropogenic influences continue to alter these and 
other reservoirs.

Carol et  al. (2006) used boat electrofishing and gillnets to sample 14 Spanish reservoirs 
and found that trophic state (i.e. chlorophyll a, total nitrogen, and total phosphorus) and 
altitude explained most of the fish assemblage variation. In our study, all significant pre-
dictors of species richness, diversity, and evenness were inversely associated with produc-
tivity. A gradient of productivity was observed by environmental vector coefficients in fish 
assemblage ordinations for all taxonomic sampling data. Additionally, drainage area and 
water clarity were the only indicators of increases in species richness. Species richness of 
lentic fish assemblages is known to be positively correlated with water body size (Irz et  al. 
2007; Miranda et al. 2008), total phosphorus (Olin et al. 2002), habitat complexity (Fischer 
and Quist 2019), and mean depth (Irz et  al. 2002). In these studies, physicochemical 
variables associated with productivity explained the most fish-assemblage variation among 
systems, similar to reservoir fish assemblages evaluated herein.

Fish assemblage comparisons
Physicochemical variables associated with eutrophic systems explained most of the overall 
fish-assemblage variation. Associations between primary productivity (e.g. chlorophyll a, 
total phosphorus, lake depth) and fish yield (i.e. fish abundance or biomass) are 
well-documented (Oglesby 1977; Downing et  al. 1990; Downing and Plante 1993). Gizzard 
shad, typically the predominant forage fish by biomass in southern reservoirs (Noble 

Table 5. S pearman rank correlation coefficients between sampling gear-specific catch rates of bluegill, gizzard shad, 
black crappie, and white perch and river-basin habitat variables of 11 North Carolina, USA reservoirs.

Electrofishing Gillnet

Bluegill Gizzard Shad Black Crappie White Perch

Variable rs p rs p rs p rs p

Surface area (km2) 0.24 0.49 0.11 0.75 0.35 0.29 0.16 0.63
Drainage area (km2) 0.57 0.07 0.27 0.42 0.47 0.15 0.61 0.05
Volume (km3) 0.13 0.71 −0.08 0.82 0.05 0.88 −0.15 0.67
Shoreline Development Index 0.28 0.40 0.17 0.61 0.18 0.60 −0.05 0.88
Elevation (m a.s.l.) −0.26 0.43 −0.13 0.71 −0.56 0.08 −0.59 0.06
Depth (m) −0.02 0.96 −0.34 0.31 −0.61 0.05 −0.65 0.03
Maximum depth (m) −0.15 0.67 −0.49 0.12 −0.47 0.15 −0.32 0.33
Secchi depth (m) −0.20 0.56 −0.65 0.03 −0.69 0.02 −0.52 0.11
Turbidity (NTU) 0.25 0.45 0.48 0.14 0.61 0.05 0.67 0.03
Temperature (°C) 0.17 0.61 0.41 0.21 0.68 0.03 0.54 0.09
Maximum temperature (°C) 0.44 0.17 0.82 <0.01 0.68 0.03 0.62 0.05
Dissolved oxygen (mg/L) 0.17 0.61 0.23 0.50 −0.20 0.56 −0.36 0.27
Minimum dissolved oxygen 

(mg/L)
−0.42 0.20 −0.40 0.23 −0.71 0.02 −0.69 0.02

Conductance (µmhos/cm) 0.25 0.47 0.29 0.39 0.76 0.01 0.74 0.01
Chlorophyll a (µg/L) 0.45 0.16 0.79 0.01 0.84 <0.01 0.65 0.04
Maximum chlorophyll a (µg/L) 0.33 0.33 0.74 0.01 0.85 <0.01 0.66 0.03
Total phosphorus (mg/L) 0.35 0.29 0.80 0.01 0.74 0.01 0.59 0.06
Ammonia (mg/L) 0.28 0.40 0.39 0.23 0.60 0.05 0.44 0.18
Nitrites and nitrates (mg/L) 0.63 0.04 0.84 <0.01 0.55 0.08 0.52 0.11
Total Kjeldahl nitrogen (mg/L) 0.43 0.19 0.78 0.01 0.92 <0.01 0.75 0.01
Correlation coefficients with p ≤ 0.05 are indicated in bold.
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1981), may benefit most from greater productivity as their abundance across lengths and 
ages tends to increase with reservoir trophic state (DiCenzo et  al. 1996; Bremigan and 
Stein 1999; Bremigan and Stein 2001). Specifically, Bremigan and Stein (2001) found that 
hatch abundance and survival of larval gizzard shad was positively correlated with total 
phosphorus concentrations in Ohio reservoirs. We observed the same relationship, as giz-
zard shad CPUE was positively correlated with most productivity measures. However, tur-
bidity was not a suitable predictor of gizzard shad CPUE, in contrast to Aday et  al. 
(2003). The large observed contribution of gizzard shad CPUE to reservoir dissimilarity 
is predictable because gizzard shad are seldom found in oligotrophic systems and have 
the potential to be the greatest contributor to overall biomass in hypereutrophic systems 
(Bachmann et  al. 1996). The success of gizzard shad populations in productive reservoirs 
can likely be attributed to beneficial life history traits such as rapid growth rates, omnivory, 
and high fecundity (Bremigan and Stein 1999; Schaus and Vanni 2000, Bremigan and 
Stein 2001). As organisms with the potential to foster eutrophication by consuming detri-
tus, translocating phosphorus and nitrogen in the water column (Schaus et  al. 1997; 
Vanni et  al. 2005), and increasing phytoplankton biomass (Aday et  al. 2003), gizzard shad 
populations can have adverse effects on other species.

Clupeids and lepomids, considered ubiquitous fish in many reservoir systems, are 
important to fish community structure because they can account for most of all prey 
fishes consumed in reservoirs (e.g. 80%; Raborn et  al. 2007). These taxa were represented 
by two species—gizzard shad and bluegill—with the highest observed relative contribu-
tions to fish assemblage dissimilarity in this study. The effects of gizzard shad on reser-
voir fish assemblages, especially bluegill populations, are well documented. Gizzard shad 
and bluegill abundances can be negatively correlated (Garvey and Stein 1998), and gizzard 
shad removal has been associated with short-term increases in bluegill abundance and 
more consistent spawning (Kirk et  al. 1986). Aday et  al. (2003) found that gizzard shad 
presence in Illinois reservoirs was associated with reduced bluegill growth rates and max-
imum adult length, suggesting that larval competition could negatively affect bluegill size 
structure. However, Neely et  al. (2018) found no significant trend in bluegill abundance 
following the near eradication of gizzard shad in a Kansas impoundment, suggesting a 
greater role of bluegill intraspecific density dependence than was observed in similar 
studies. Like gizzard shad, bluegills may also contribute to eutrophication; Nowlin and 
Drenner (2000) found that bluegills increased turbidity, chlorophyll a, total nitrogen, and 
total phosphorus in mesocosm fish assemblages.

Bluegill CPUE was positively related to all measures of productivity, but it was only 
significantly correlated with nitrogen (NO2 + NO3) despite its high contribution to reservoir 
fish assemblage dissimilarity and the strong gradient of productivity observed throughout 
our study. Other studies have documented positive relationships between bluegill growth 
and total phosphorus (Sundmark and Jennings 2017), and bluegill abundance and turbidity 
(Bevil and Weber 2018). Bluegills may also benefit from greater productivity, as increases in 
turbidity may lower predation risk (Miner and Stein 1996). Future research investigating 
how bluegill populations are affected by biotic and abiotic variables is important due to the 
complexity of these relationships (e.g. Carlson and Hoyer 2023), particularly their context 
dependence relative to habitat and fish assemblage alteration, and the role of bluegills as 
indicators of reservoir fish assemblage differences, as observed herein.

Black crappies also contributed substantially to driving reservoir fish assemblage differ-
ences and were positively associated with factors reflecting increasing eutrophic condi-
tions. Rapid growth rates of black crappies have been observed in eutrophic reservoirs 
(Maceina et  al. 1996), and Bachmann et  al. (1996) found that black crappie occurrence 
and standing crop were positively correlated with trophic state. We observed that black 
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crappie CPUE was positively correlated with chlorophyll a, which has been positively 
associated with first-year growth in Minnesota (McInerny and Cross 1999), juvenile abun-
dance in Alabama (Dubuc and DeVries 2002), and probability of occurrence in Florida 
(Allen et  al. 1998). We observed that turbidity-associated variables (e.g. decreased Secchi 
depth) were positively correlated with black crappie CPUE. Spier and Heidinger (2002) 
found similar growth among black crappies stocked in ponds across a range of turbidities, 
suggesting that they can locate prey in turbid water. Our results were consistent with this 
conclusion, as we observed a moderate, positive correlation between black crappie CPUE 
and reservoir turbidity. Recruitment variability among black crappie populations in South 
Dakota waters was best described by shoreline development and reservoir size (Guy and 
Willis 1995), neither of which influenced black crappie CPUE in our study.

The effects of altered hydrology and watershed disturbance on reservoirs may make 
them more susceptible to nonnative fish invasions (Marchetti et  al. 2004; Havel et  al. 
2005). White perch are a common freshwater invader (Hergenrader and Bliss 1971; 
Boileau 1985; Prout et  al. 1990; Mills et  al. 1994; Feiner et  al. 2012) and produce viable 
populations outside of their native range due to favorable life history traits that include 
reproductive flexibility (Sheri and Power 1968; Feiner et  al. 2012) and opportunistic feed-
ing (Reid 1972; Couture and Watzin 2008). Newly introduced white perch populations 
often have high growth rates, high fecundity, and early age at maturity, all of which 
facilitate population establishment (Feiner et  al. 2012). Rapid increases in white perch 
abundance may be associated with declining populations of black crappie and bluegill due 
to feeding competition (Hurley and Christie 1977; Feiner et  al. 2013, 2019). Our findings 
are concordant with previous research, as white perch were more abundant across our 
study sites in relatively shallow reservoirs with high nutrient concentrations, high turbid-
ity, and high conductivity, similar to Hawes and Parrish (2003).

Management implications
Among the reservoirs that we sampled, bluegill, gizzard shad, black crappie, and white 
perch disproportionately explained reservoir fish assemblage dissimilarity, and these spe-
cies were strongly correlated with variables related to greater productivity. Together, at the 
assemblage level, these species may merit increased monitoring within the localized envi-
ronmental context of each reservoir because they are potential indicators of assemblage 
structure and ecological changes associated with increasing anthropogenic influences in 
their geographical ranges. Sampling protocols designed to target these four species could 
be incorporated into fisheries management programs to enhance understanding of their 
population dynamics and promote informed environmental decision making. However, 
our results do not support a shift from assemblage-level monitoring to species-specific 
sampling and, in fact, reinforce the contrary. Indeed, our findings illustrate how simulta-
neous collection of assemblage- and population-level fisheries data may generate both 
ecological and management insights. Success in incorporating this framework hinges on 
consistent monitoring of fish assemblages through standardized sampling, opportunistic 
data collection on important non-game species, and integration of environmental and 
fisheries data. Overall, future research on reservoir fish assemblages in relation to biotic 
and abiotic conditions may be helpful for advancing fish ecology and management alike.
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Appendix A 

Estimated catch-per-unit-effort (CPUE) for all species individually was calculated as the mean number of 
individuals per hour of electrofishing and the mean number of individuals per net-night for gillnets. 
Mean and standard error (SE), minimum (Min), and maximum (Max) CPUE are reported for all species 
identified in each sampling gear from 11 reservoirs in North Carolina, USA.

Gillnet Electrofishing

Common name Scientific name Mean (SE) Min;Max Mean (SE) Min;Max

Alewifea Alosa pseudoharengus 5.45 (3.71) 0;42
American Eelab Anguilla rostrata 0.05 (0.05) 0;0.6
Black Bullheadab Ameiurus melas 0.007 (<0.01) 0;0.05
Blue Catfishb Ictalurus furcatus 1.71 (0.61) 0;6.2 0.05 (0.05) 0;0.6
Blueback Herringa Alosa aestivalis 8.56 (7.01) 0;78.6
Bowfinab Amia calva 0.002 (<0.01) 0;0.03
Brassy Jumprockab Moxostoma sp. 0.005 (<0.01) 0;0.05 0.05 (0.05) 0;0.6
Brown Bullhead Ameiurus nebulosus 0.18 (0.17) 0;1.88 0.71 (0.46) 0;4.8
Chain Pickerelb Esox niger 0.03 (0.03) 0;0.28 0.38 (0.38) 0;4.2
Channel Catfish Ictalurus punctatus 2.62 (0.7) 0.58;8.48 2.18 (0.48) 0;5.4
Common Carp Cyprinus carpio 0.73 (0.28) 0;2.88 2.29 (1.04) 0;10.8
Eastern Creek 

Chubsuckerab
Erimyzon oblongus 0.005 (<0.01) 0;0.05 0.27 (0.17) 0;1.8

Eastern Silvery 
Minnowab

Hybognathus regius 0.11 (0.11) 0;1.2

Flathead Catfishb Pylodictis olivaris 0.53 (0.27) 0;3.1 0.11 (0.11) 0;1.2
Gizzard Shad Dorosoma cepedianum 2.25 (0.50) 0.45;5.48 119.29 (28.72) 3.6;330
Golden Redhorseab Moxostoma erythrurum 0.002 (<0.01) 0;0.03 0.05 (0.05) 0;0.6
Golden Shinerab Notemigonus 

crysoleucas
0.38 (0.17) 0;1.8

Grass Carpab Ctenopharyngodon 
idella

0.005 (<0.01) 0;0.03 0.11 (0.11) 0;1.2

Longnose Garb Lepisosteus osseus 0.06 (0.03) 0;0.35
Northern Hog 

Suckerab
Hypentelium nigricans 0.009 (0.01) 0;0.08 0.33 (0.27) 0;3

Notchlip Redhorseb Moxostoma collapsum 0.55 (0.27) 0;2.75 0.27 (0.22) 0;2.4
Quillbackb Carpiodes cyprinus 0.44 (0.25) 0;2.63 0.05 (0.05) 0;0.6
Satinfin Shinerab Cyprinella analostana 0.05 (0.05) 0;0.6
Shorthead 

Redhorseab
Moxostoma 

macrolepidotum
0.007 (<0.01) 0;0.05

Sicklefin Redhorseab Moxostoma sp. 0.02 (0.02) 0;0.18
Silver Redhorseb Moxostoma anisurum 0.28 (0.28) 0;3.05 0.27 (0.27) 0;3
Striped Bass Morone saxatilis 1.16 (0.28) 0.2;2.55 0.98 (0.37) 0;3.6
Swallowtail Shinerab Notropis procne 0.16 (0.16) 0;1.8
Threadfin Shada Dorosoma petenense 42.16 (5.79) 0;67.2
V-lip Redhorseab Moxostoma pappillosum 0.01 (0.01) 0;0.08
White × Striped 

Bassab
Morone chrysops × M. 

saxatilis
0.005 (<0.01) 0;0.05

White Bassb Morone chrysops 0.11 (0.06) 0;0.53
White Catfishb Ameiurus catus 1.27 (0.49) 0;5 0.27 (0.17) 0;1.8
White Perch Morone americana 4.49 (1.12) 0;9.23 47.56 (9.71) 0.6;117.6
White Shinera Luxilus albeolus 1.15 (1.15) 0;12.6
White Suckerab Catostomus commersoni 0.007 (<0.01) 0;0.05 0.44 (0.44) 0;4.8
Yellow Bullheadb Ameiurus natalis 0.13 (0.08) 0;0.73 0.16 (0.12) 0;1.2
aSpecies for which < 10 individuals were sampled across all gillnet samples.
bSpecies for which < 10 individuals were sampled across all electrofishing samples.
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